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Abstract
Outlier-robust principal component analysis (OR-
PCA) has been broadly applied in scientific dis-
covery in the last decades. In this paper, we
study online ORPCA, an important variant that ad-
dresses the practical challenge that the data points
arrive in a sequential manner and the goal is to
recover the underlying subspace of the clean data
with one pass of the data. Our main contribution
is the first provable algorithm that enjoys compa-
rable recovery guarantee to the best known batch
algorithm, while significantly improving upon the
state-of-the-art online ORPCA algorithms. The
core technique is a robust version of the residual
norm which, informally speaking, leverages not
only the importance of a data point, but also how
likely it behaves as an outlier.

1. Introduction
Principal Component Analysis (PCA) is a fundamental tool
for analyzing high-dimensional data. The key idea is to
get the optimal subspace approximation. In the absence
of outliers, such subspace can be computed by the top-
k left singular vectors, or Principal Components, of the
sample covariance matrix. This is one of the most important
problems in machine learning that has been studied for a
long time. The PCA problem is well understood when the
data matrix is fully observed, and there is no noise. Thus,
a large body of recent works focus on the online setting or
when the data are corrupted.

Robust PCA. Many robust PCA algorithms have been pro-
posed because the traditional PCA breaks down immedi-
ately in the presence of outliers. Some of them focused
on the robust PCA in the low-dimension regime. They ei-
ther applied the standard PCA on the robust estimate of
the covariance matrix (Xu & Yuille, 1995; Yang & Wang,
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1999; la Torre & Black, 2001; Brubaker, 2009; Klivans et al.,
2009), or tried to find a low-dimension that has the max-
imum robust estimation of the projected distance, called
projection pursuit (Croux et al., 2007). A more challenging
work lies in the high-dimension regime where the ambi-
ent dimension is higher than the number of observed data.
In (Candès et al., 2011; Chandrasekaran et al., 2011), the
exact recovery of the low-rank and sparse component via
convex optimization was well established by minimizing a
weighted combination of a nuclear-norm of one component
and an ℓ1-norm of another component. Specifically, Xu
et al. (2012) showed that matrix decomposition using nu-
clear norm minimization can recover the column space and
identify the outliers. The nearly optimal recovery guarantee
was also achieved by Cherapanamjeri et al. (2017) using the
threshold-based approaches, which reduced the computa-
tional cost significantly. However, these algorithms require
not only observing all the samples, but also inliers being
incoherent (thus inliers are not thresholded). Meanwhile,
another widely used convex surrogate is the max-norm reg-
ularization (Srebro et al., 2004), where the max-norm pro-
moted the a low-rank structure. Srebro & Shraibman (2005)
studied collaborative filtering and showed a tighter general-
ization bound than the nuclear norm theoretically, and Lee
et al. (2010); Jalali & Srebro (2012) showed its appealing
performance in some practical applications empirically. The
very recent work Deshpande & Pratap (2021) extended the
outlier low-rank approximation problem under ℓp-metric,
and extended the analysis over M-estimator loss functions
and affine subspace approximation. Readers may refer to
Lerman & Maunu (2018) for a comprehensive survey of the
works on robust subspace recovery.

Online PCA. The online setting is more restricted than of-
fline in that we can only observe the samples in a sequential
manner. Note that this is different from stochastic optimiza-
tion where the algorithms can access an arbitrary sample in
each iteration (Ozawa et al., 2004; Nie et al., 2013; Arora
et al., 2013; Garber & Hazan, 2015; Hallgren & Northrop,
2018). The recent work Garber (2019) cast the online PCA
into the regret minimization framework. It proposed the
regularized Online Gradient Ascent model, and enjoyed the
poly-logarithmic regret bound, requiring only linear mem-
ory and run-time per iteration. Another way is to progres-
sively expand the subspace of inliers. Boutsidis et al. (2015)
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proposed the first online algorithm for computing the PCA
embedding under such setting, resulting in an additive error
guarantee. In a recent work, Bhaskara et al. (2019) gave an
online algorithm for Column Subsection Selection(CSS) as
well as PCA, and achieved the multiplicative approximation
by residual-based sampling method. Meanwhile, based on
Krasulina’s method Krasulina (1969) and Oja’s rule Oja &
Karhunen (1985), some works achieved the non-asymptotic
convergence guarantee for the streaming PCA problem (Jain
et al., 2016; Li et al., 2016; Allen-Zhu & Li, 2017; Tang,
2019; Amid & Warmuth, 2020). However, it turns out that
all of these algorithms fail in the presence of outliers.

Online Robust PCA. As a combination of robust and on-
line settings, there are two variants of Online Robust PCA.
One assumes that the features of each newly observed sam-
ple are sparsely corrupted; see e.g. (Feng et al., 2013b;
Shen et al., 2014). Another class assumes that some sam-
ples are arbitrary or even adversarial while the rest form a
low-dimensional space, which is the regime of our interest.
In this spectrum, The most related work to this paper is
Feng et al. (2013a) in the sense that they considered online
optimization for outlier-robust PCA. Unfortunately, their
theoretical guarantees were less favorable for practical prob-
lems for two reasons: 1) they required strong conditions
on the initial iterate, which is hard to satisfy; and 2) their
results held only in an asymptotic sense while we present fi-
nite convergence guarantee. The reader may refer to Table 1
for a comparison.

1.1. Main results

The main algorithmic contribution of the paper is a novel
online outlier-robust PCA (ORPCA) algorithm that uses
adaptive sampling technique which shows promising results
in the non-robust setting (Bhaskara et al., 2019).

Let matrix A ∈ Rd×n be the observed matrix with n sam-
ples in d dimensions, with Ai being the i-th column. Let
k < min{d, n} be the target rank of the subspace of inliers.

We assume the following conditions.

Assumption 1. The point arrives one after another, and we
can only make a one-time pass over it.

Assumption 2. The matrix consists inliers Ain and outliers
Aout, where the entries of Aout can be arbitrary and shown
in columns in arbitrary order. There exists an upper bound
z on the number of outliers. Namely, |Aout| ≤ z.

Let ξ be a quantity such that
∥∥Ain − SVDk(Ain)

∥∥2
F
≤ ξ.

Let M be the points marked as outliers, and Ain\M be the
inliers not marked as outliers. We present our first theorem
below.

Theorem 1. If Assumption 1 and Assumption 2 are sat-
isfied, then there exists an efficient algorithm that upon

seeing each Ai, decides to add it to the outlier set M ,
or outputs an embedding Yi ∈ Rr. In the end we have,
the error bound on the inliers not marked as outliers is
minΦ∈Rd×r,ΦTΦ=I

∥∥Ain\M − ΦY
∥∥2
F
≤ O(ξ log

∥Ain∥2
F

ξ ),
with the output dimension bounded by r ≤ O(k ·
(log

∥Ain∥2
F

ξ )2). The number of marked outliers satisfies

|M | ≤ O(z · (log ∥Ain∥2
F

ξ )2).

Firstly, let us compare the bound above with that of
Bhaskara et al. (2019) which is the state-of-the-art online
PCA algorithm. For direct comparison, let us think of
the approximation error ξ as 1

γ ∥Ain∥2F , where γ ≥ 1 is
a constant value. Then we can obtain the error guaran-
tee O( log γ

γ ∥Ain∥2F ) using an embedding dimension O(k ·
(log γ)2) with high probability. It is worth noticing that they
assume every point is an inlier, thus their algorithm only
works for noise-less setting; while our algorithm is robust to
at most z outliers, and enjoys the same error and embedding
dimension guarantee over inliers not marked outliers, by
discarding O(z · (log γ)2) points as outliers.

We note that error is bounded by roughly O(ξ · log ∥Ain∥2
F

ξ ),
where ξ is parameter.

It is an important estimation, because it is not only a pa-
rameter to run Algorithm 1 and 2, but also appear in their
theoretical guarantees. It is unclear whether this is an arti-
fact of our analysis, or is fundamental for the problem. We
note that if we relax the restriction of Assumption 1, and
permit a second pass over the data, then we can combine
our algorithm with the additive approximation algorithm in
incremental fashion, and enjoy an error guarantee with a
constant approximation factor. We show our second result
as follows.

Theorem 2. If Assumption 2 is satisfied, and we allow a
second-time pass over the point, then there exists an efficient
algorithm that upon seeing each Ai, decide to add it to the
outlier set M , or outputs an embedding Yi ∈ Rr. In the
end we have, the error bound on the inliers not marked
as outliers is minΦ∈Rd×r,ΦTΦ=I

∥∥Ain\M − ΦY
∥∥2
F
≤∥∥Ain − SVDk(Ain)

∥∥2
F + ϵξ, with the output dimension

bounded by r ≤ O( k
ϵ2 (log

∥Ain∥2
F

ξ )4).

On the positive side, the above theorem significantly im-
proves upon the approximation error. On the other hand,
there is a trade-off between the approximation error and
the output dimension. Indeed, we show that by sacrific-
ing additional O( 1

ϵ2 · (log
∥Ain∥2

F

ξ )2) factor of embedding
dimension, we can improve our approximation ratio from
data-dependent to a constant.
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Table 1. A comparison with prior algorithms. In the “Online” column, the “≈” of Algorithm 2 means that the algorithm requires the
two-passes over data. It turns out that with such one additional pass, the algorithm can make a correction to its prior prediction and hence
improves the performance guarantee. In the “Error” column, the “unknown” of Feng et al. (2013a) means that their algorithm does not
converge to vanishing approximation error provably. Notably, they only show computational convergence to a stationary point with the
unknown statistical property.

Work Online? Outlier-robust? Error
Xu et al. (2012) ✗ ✓

∥∥Ain − SVDk(Ain)
∥∥2
F

Cherapanamjeri et al. (2017) ✗ ✓
∥∥Ain − SVDk(Ain)

∥∥2
F

Boutsidis et al. (2015) ✓ ✗
∥∥Ain − SVDk(Ain)

∥∥2
F
+ ϵ ∥Ain∥2F

Bhaskara et al. (2019) ✓ ✗ O((log
∥Ain∥2

F

ξ )2 · ξ)
Feng et al. (2013a) ✓ ✓ unknown

This work (Algorithm 1) ✓ ✓ O((log
∥Ain∥2

F

ξ )2 · ξ)
This work (Algorithm 2) ≈ ✓

∥∥Ain − SVDk(Ain)
∥∥2
F
+ ϵξ

1.2. Overview of main techniques

Our algorithm is inspired by Bhaskara et al. (2019) in part,
but has crucial differences. We present an overview of the
techniques below, and highlight our novelty.

1) Online PCA using adaptive sampling. At a high level,
the online PCA algorithm processes in phases. In each
phase, a new direction would be added to the subspace
when it is deemed “significant”. By adaptive sampling
method, the “significance” of every point is proportional
to its residual norm (to be defined) over current subspace.
Therefore, each point is either informative (thus directly
adding its direction to the subspace) or “not-informative”
(thus creating a running sketch to sum these vectors until
the sum of their residual norms is informative, then adding
its direction to the subspace). Classic adaptive sampling is
related to column subset selection. For example, Deshpande
& Rademacher (2010); Paul et al. (2015) show that there
exists a sub-matrix that projects full points onto its span
and enjoy a favorable ratio to the best rank-k approximation.
Specifically, we show that adaptive sampling can be slightly
modified to sample informative residual norms, such that
it can solve online PCA. Moreover, the processes of com-
mitting subspace and outputting embedding can be done in
a one-shot manner, so that the algorithm enjoys favorable
computational complexity. The guarantee of the bound on
the number of phases is formally shown Lemma 7.

2) Threshold-based outlier removal. Suppose the data is
corrupted by z ≫ k outliers. Intuitively, this is challenging
in an online model, because if we encounter a point far
from the current subspace V , we are not sure if it represents
a new direction or is simply an outlier. We show each
category of the whole phases by introducing the inlier and
outlier phases, which are identified by the residual norm
of points under or over the threshold ξ/z. This outlier
threshold ensures that once z/k of the distant points are

seen, there is a sufficient probability of picking the direction.
We show that our adaptive sampling design can choose
O(z · log ∥Ain∥2

F

ξ ) points being outliers; Putting all these

ideas leads to an O(ξ · log ∥Ain∥2
F

ξ ) error bound for online
PCA; see Section 2.1

3) Incremental additive approximation algorithm to im-
prove error. We define the algorithm in an incremental
fashion, when it maintains and incrementally adjusts the
objective in each step. For example, our algorithm updates
the subspace V and a covariance matrix U incrementally
when getting new points. It is commonly applied in on-
line fashion, where the memory and computation cost are
limited. Intuitively, if two algorithms have incremental prop-
erty, we can combine them asynchronously (if the second
algorithm requires the results from the first algorithm) or
synchronously (if two algorithms are independent). By ob-
serving that the error of the algorithm 1 is a new residual,
the main idea is to process it to an additive approximation
algorithm (for example, the first algorithm of Boutsidis et al.
(2015)). However, it require a second pass over the data. We
show that we can process the residual of the marked inliers
and reduce the error over inliers not marked as outliers; see
Section 2.2.

4) Removing the dependence on ξ. Furthermore, we note
that the two theorems assumed that the parameter ξ is known
and satisfies the bound ξ ≥

∥∥Ain − SVDk(Ain)
∥∥2
F

, which
can only be estimated in hindsight. Indeed, we show that we
can remove this assumption by assigning an arbitrary small
approximation error, and double its value when sufficient
phases are met; see Section 2.3.

1.3. Notations

We use capital letters, for example, M , to denote a matrix,
and Mi denotes its ith column. The capital letter A is
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reserved for the data matrix. The ℓ2-norm of a vector Mi

is denoted by ∥Mi∥. The Frobenius norm of a matrix M
is denoted by ∥M∥F . The size of the set is denoted by
|·|. In the ith phase, the algorithm observes the sample
Ai and maintains the subspace V i. We denote the output
embedding Yi = (V i)TAi, where the subspace V i is a set of
normalized residuals over previous phases. The projection
of Ai to the space orthogonal to V i is denoted by Π⊥

V iAi =
Ai − V i(V i)TAi. We also use Π⊥

i = I − V i(V i)T .

Recall that each column of A is a sample. By Assumption 2,
the set of all columns of matrix A can be partitioned into
inliers and the outliers. That is, A = Ain ∪ Aout. We
assume there exists an upper bound z on the number of
outliers: |Aout| ≤ z. Let SVDk(Ain) be the optimal rank-
k approximation of Ain, then the optimum error of the k-
dimension embedding is

OPTk =
∥∥Ain − SVDk(Ain)

∥∥2
F
. (1)

1.4. Roadmap

In Section 2, we describe our main algorithms, and in Sec-
tion 3 we show the guarantees. We conclude our work in
Section 4, and defer all the proof details and numerical
experiments to the appendix.

2. Main Algorithms
In this section, we present our main algorithms.

2.1. Logarithmic approximation

We present our online robust logarithmic approximation
algorithm in Algorithm 1. Intuitively, our algorithm uses
adaptive sampling based on residual vectors to form the
subspace, and process the outlier removal.

Definition 3. In the iteration i, we assign the residual norm
in approximating the new point Ai using the current sub-
space V i by ∥∥∥Π⊥

V iAi

∥∥∥ =
∥∥∥Ai − V i(V i)TAi

∥∥∥ (2)

A collection of Ai would be combined as a “proxy” vector
until the sum of these residual square norm values are ≥
O(ξ/k). Then the phase ends, and we add the direction
of “proxy” vector in that phase to V i. At a high level,
the “proxy” vector with the sum of residual square norm
≥ O(ξ/k) is deemed significant, thus adding its direction
to V i will occur a smaller error in the future.

In Bhaskara et al. (2019), the author uses one threshold of
residual square norm O(ξ/k) to identify the informative
and non-informative points. On top of that, our algorithm
adds an additional threshold O(ξ/z) to identify the inliers

and outliers. By our assumption, we have z ≫ k. Thus, we
can always get O(ξ/k)≫ O(ξ/z), and classify points into
three categories.

1. When the point residual square norm is ≤ O(ξ/z),
we name it non-special inlier, and accumulate them
until the sum of their residual norms ≥ O(ξ/k). Then
the span of the “proxy” vector can be treated as an
important direction in the subspace, and we add it
to the subspace. If the phase terminates with a non-
special inlier, it is called an non-special inlier phase;
see Steps 4 – 10.

2. When the point residual square norm is between
O(ξ/k) and O(ξ/z), the point could be an non-
informative outlier, or an non-informative inlier. Such
threshold can be thought as the cross-field of inliers
and outliers. We name such point non-special outlier.
Then we linearly combine it to the “proxy” vector with
probability O(k

∥∥Π⊥
V iAi

∥∥ /ξ). When z/k number of
such points are observed, the “proxy” vector is deemed
important, and we add it to the subspace. If the phase
terminates with a non-special outlier, it is called an
non-special outlier phase; see Steps 13 – 18.

3. When the point residual square norm is ≥ O(ξ/k),
the point could be an informative outlier, or an infor-
mative inlier lying in the new directions. Intuitively,
there should be a decent number of inliers lying in the
new directions, while outliers are separated from other
points. Therefore, a special point is an inlier near the
new direction with high probability. We name such
point special outlier, and add it to the subspace with
probability O(k/z). If the phase terminates with a spe-
cial point, it is called a special phase; see Steps 19 – 21.

We note that when outliers are arbitrarily far from authentic
data, rendering distance-based sampling is prone to pick
outliers, so that we can mitigate their effect. The special
outliers and non-special outliers are distant from the current
subspace, so it is reasonable to mark them as an outlier. Yet,
it is possible that inliers can also be classified as outliers, for
example, when a new direction starts to form. We claim that
if one direction has more than z/k points, then once z/k of
them are observed, there is a sufficiently large probability
of adding this direction to the subspace. Meanwhile, for
the directions having < z/k points, the total number of
picked points near these directions is < z. Thus classifying
the points as outliers would only increase a factor 2 in the
number of marked outliers.

2.2. Constant approximation

We observe that for each vector Ai, Algorithm 1 outputs an
embedding of Ai on the current subspace spanned by V i
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Algorithm 1 Online ORPCA with Logarithmic Approxima-
tion Error
Require: Matrix A ∈ Rd×n whose columns {Ai} arrive

one by one, parameter ξ that upper bounds the optimal
approximation error over the inlier points, an upper
bound z on the number of outliers, parameter k > 1.

Ensure: The online low-dimensional embedding yi; the
subspace V at the end.

1: V ← ∅, U ← 0d×d, w ← 0, t ← 0, α ← 0, β ← 0,
r ← 2k log

∥Ain∥2
F

ξ .
2: while columns Ai arrive do

3: Π⊥
V Ai ← Ai − UAi, pAi ←

k∥Π⊥
V Ai∥2

512ξ .
4: if pAi

< k
z then

5: α ← α + pAi
, w ← w + XAi, where X is ±1

uniformly at random.
6: if α ≥ 1 then
7: w′ ← Π⊥

V w

∥Π⊥
V w∥ , add w′ to V , U ← U + w′w′T .

8: Reset w, α, t and β to 0.
9: end if

10: else
11: Mark Ai as outliers.
12: if pAi

< 1 then
13: With probability pAi

: t ← t + X Ai√
pAi

, where

X is ±1 uniformly at random, β ← β + k
z .

14: if β ≥ 1 then
15: t′ ← Π⊥

V t

∥Π⊥
V t∥ , add t′ to V , U ← U + t′t′T .

16: Reset w, α, t and β to 0.
17: end if
18: else if pAi

≥ 1 then
19: With probability k/z: Set A′

i ←
Π⊥

V Ai

∥Π⊥
V Ai∥ ,

w′ ← Π⊥
V w

∥Π⊥
V w∥ , add A′

i and w′ to V , U ←

U +A′
iA

′T
i + w′w′T .

20: Reset w, α, t and β to 0.
21: end if
22: end if
23: Return the embedding yi ← V TAi, resized to di-

mension r by adding zeros, so that the dimension of
all embedding is fixed.

24: end while
return V .

with the guarantee of the residual square norm. We can pass
the residual and its guarantee to the additive algorithm of
Theorem 4 only for marked inliers. The final output is the
joint embedding of the outputs from the two algorithms.

Additive approximation algorithm. To obtain the desired
bound on error and output dimension, we need to use the
previous work of Boutsidis et al. (2015). It proposed an al-
gorithm for online PCA. The algorithm requires the knowl-

Algorithm 2 Online ORPCA with Constant Approximation

Require: Matrix A ∈ Rd×n whose columns arrive one by
one, parameters ξ, k and ϵ.

Ensure: The online low-dimensional embedding yi; the
subspace W at the end.

1: Initialize V ′, V ′′ ← ∅.
2: Set output dimension l← O(k′/ϵ′2)+O(k·log ∥Ain∥2

F

ξ ),
where the first term is from Theorem 4, and the second
from Theorem 5.

3: while columns Ai arrive do
4: Execute Algorithm 1 with input Ai; this updates V ′

and updates y′i ← (V ′)TAi.
5: if

∥∥Π⊥
V Ai

∥∥2 < ξ
z then

6: Execute a step of OPCA-ADD(Π⊥
V ′Ai, k′, ϵ′, Γ),

where k′, ϵ′, Γ are defined in (3); this updates V ′′,
and outputs y′′i ← (V ′′)T (Π⊥

V ′Ai)
7: Let W be an orthogonal basis for span(V ′ ∪ V ′′)
8: end if
9: Return the embedding yi ←WTAi

10: end while
return W .

edge of the Frobenius norm of the entire matrix ∥A∥2F and
achieved an additive error ϵ ∥A∥2F , and maintains the sub-
space U by only appending the new direction if necessary
when the new sample arrives. We denote it OPCA-ADD,
and leverage it into Algorithm 2. We established the follow-
ing theorem for OPCA-ADD algorithm and will invoke it to
analyze Algorithm 2.

Theorem 4. Given an input matrix A ∈ Rd×n, a param-
eter ϵ > 0 and an upper bound Γ on ∥A∥2F , there exist
an algorithm for online PCA that, at every time i, upon
seeing a vector Ai, outputs an embedding yi ∈ Rl, where
l = O(k/ϵ2), and maintains a matrix V ′′i with d rows and
orthonormal columns. V ′′i is only incremented as the al-
gorithm proceeds. The embedding yi of the vector Ai is
precisely (V ′′i)TAi. One has the guarantee that

∑
i

∥∥∥Ai − V ′′iyi

∥∥∥2
F
≤
∥∥A− SVDk(Ain)

∥∥2
F
+ ϵΓ.

We now formally present the constant approximation algo-
rithm in Algorithm 2. The OPCA-ADD refers to the additive
approximation of Boutsidis et al. (2015).
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Define the following:

k′ = 20k · log
∥Ain∥2F

ξ
, (3)

ϵ′ =
ϵ

log
∥Ain∥2

F

ξ

, (4)

Γ = ξ · log
∥Ain∥2F

ξ
. (5)

In Algorithm 2, when a point Ai arrives, we first feed it to
Algorithm 1 and update V ′ as necessary. If it is non-special
inlier, we apply the residual projection Π⊥

V ′Ai to OPCA-
ADD and get the second set V ′′. It is worth noting that we
only execute OPCA-ADD algorithm for non-special inliers.
This is because we do not need to refine the cost we have
incurred on marked outliers. The output W is the union of
V ′ and V ′′.

2.3. Remove the dependence on ξ

The assumption on having a parameter ξ such that ξ ≥
OPTk is important, because it not only appears in the the-
oretical guarantee but also is actually required to run the
algorithm. In the Algorithm 3, we show how to apply a
general way to remove this assumption, at the expense of an

additional factor of log
(∥Ain−SVDk(Ain)∥2

F

ξ

)
in the embed-

ding dimension and the number of marked outliers.

Let us denote Lδ = log
∥Ain∥2

F

ξ + log (1/δ). We show the
removing procedure in two steps. Firstly, we show an analog
of Theorem 5 without the assumption on ξ. Then for the
same incremental property, we can run the residuals through
the instantiation of the algorithm in Boutsidis et al. (2015)
and output the constant approximation.

First step. We start with the given value of ξ0, and run
Algorithm 1. If the total number of phases with the current
ξ0 exceeds kLδ , we conclude that ξ0 is too small, and double
ξ0. Once ξ0 ≥

∥∥Ain − SVDk(Ain)
∥∥2
F

, we will no longer
exceed the bound on the number of phases. The number
of doubling steps needed is log

∥∥Ain − SVDk(Ain)
∥∥2
F
/ξ.

Since this number is bounded by Lδ, with probability at
least 1 − δ, the output dimension becomes O(kL2

δ) and
the number of marked outliers becomes O(zL2

δ), which
establishes Theorem 1.

Second step. We observe that Algorithm 3 also has the
incremental property. That is, we maintain the subset Vold +
V and output the projection on this space. In the end, we
have an O(Lδ) approximation to the error. Thereby, we can
combine it with Algorithm 1 from Boutsidis et al. (2015),
with the following parameters:

k′ = 20k · L2
δ , ϵ

′ = ϵ · 1

Lδ
,Γ = ξ · Lδ. (6)

Algorithm 3 Online ORPCA Logarithmic Approximation
without Parameter ξ

Require: Matrix A ∈ Rd×n whose columns {Ai} arrive
one by one, arbitrary ξ, and parameters k, ϵ.

Ensure: The online low-dimensional embedding yi; the
subspace Vold at the end.

1: Initialize Vold ← ∅, V ← ∅, Uold ← ∅, U ← 0d×d,
w ← 0, t← 0 and running sum α← 0, β ← 0.

2: while columns Ai arrive do
3: Invoke Algorithm 1 with input Π⊥

Vold
Ai; this updates

updates V .
4: Return the embedding yi ← V T

oldAi ∪ V TAi.
5: if number of phases (the dimension of V ) exceeds

kLδ then
6: Vold ← Vold∪V ; Uold ← Uold+U ; V ← ∅, ξ ← 2ξ.
7: end if
8: end while

return Vold.

Thus the number of columns used overall is O(k′/ϵ′2) =

O(
kL4

δ

ϵ2 ). This establishes Theorem 2. We defer the detailed
proof to the appendix.

3. Performance Guarantee
We state the guarantee of our algorithms. Recall that the
analysis of Algorithm 3 has been given in Section 2.3.

3.1. Logarithmic approximation

We start by showing the following theorem that character-
izes the performance of Algorithm 1, which is almost our re-
sult of Theorem 1, except for the requirement of ξ ≥ OPTk.
Theorem 5. If Assumption 1 and Assumption 2 are satisfied,
and δ > 0, then with probability 1−δ, Algorithm 1 satisfies:
the number of phases, and the number of columns r of the
subspace V , is ≤ O(k · log ∥Ain∥2

F

ξ + log 1/δ). The number

of points marked as outliers is O(z · log ∥Ain∥2
F

ξ + z
k log 1/δ).

The objective cost for the inlier points not marked as outliers
is O(ξ · log ∥Ain∥2

F

ξ + ξ
k log 1/δ). The running time of each

step is O(d2).

To ease the discussion of the theorem, we need the following
definition.
Definition 6. A phase is said to be a majority outlier phase
if one of the following conditions hold:

1. The phase is non-special inlier and the following in-
equality holds (where {ui}ri=1 are the non-special in-

liers in the phase):
∑

i∈[r]∧ui∈A\Ain

k∥Π⊥
V ui∥2
ξ ≥ 1

2 .

2. The phase is non-special outlier and the following in-



Residual-Based Sampling for Online Outlier-Robust PCA

equality holds (where {ui}ri=1 are the non-special out-
liers in the phase):

∑
i∈[r]∧ui∈A\Ain

k
z ≥

1
2 .

If a phase is not majority outlier, then it is said to be a
majority inlier phase.

Observe that for a majority outlier phases, the number of
outliers in the phase has the lower bound z

2k , whereas we
have an upper bound for the total number of outliers z.
Thereby, the number of a successful majority outliers phases
must be at most O(k), otherwise the number of outliers
would exceed z, which contradict to our Assumption 2.

For majority inlier phases, we show that they are either spe-
cial, non-special inlier or non-special outlier. To get the
support of their bounds on number, we use a crucial geo-
metric lemma proposed in Bhaskara et al. (2019). The key
observation is that if each vector has a non-trivial orthogonal
component to all of the preceding vectors, we can find upper
bound the total number of such vectors in terms of k.

Lemma 7 (Bhaskara et al. (2019)). Let v1, v2, ..., vr ∈ Rd

be a set of linearly independent vectors, r ≤ d. Let c > 0
be any constant, and let Γ be a parameter satisfying Γ ≥
1
c

∥∥V − SVDk(k)
∥∥2
F

. Suppose that vi satisfy
∥∥Π⊥

i−1

∥∥2 ≥
γ. Suppose additionally that γ2 ≥ 2cΓ

k . Then the number of

columns r satisfies the bound r ≤ 2k · log
(

∥V ∥2
F

2cΓ

)
.

By lemma 7, we immediately have the estimate of number
of special phases, since the total number of the special points
over inliers and outliers is O(k · log ∥Ain∥2

F

ξ + z), and we
accept them with probability k/z. Recall k/z < 1, by the
law of large numbers, we have the number of special phases
O(k · log ∥Ain∥2

F

ξ ).

The following definition summarizes the sense that deemed
“successful”, in which we require w to be a “proxy” for the
phase. We note that the analysis of non-special inlier and
non-special outlier phases are similar, so we only show that
of non-special inlier phase. For the full and detailed proof,
readers can refer to the appendix.

Lemma 8. (Non-special inlier phases with majority inliers)
Let the phase be a majority inlier non-special inlier phase.
Let {ui}ti=1 be the non-special inliers in the phase. Then
with probability at least 1/4 we have:

1.
∥∥Π⊥

V w
∥∥2 ≥ 1

8

∑t
i=0

∥∥Π⊥
V ui

∥∥2 .
2. If Πk is the projection matrix orthogonal to the k-SVD

space of the inliers Ain, then

∥Πkw∥2 ≤ 16

t∑
i=1

∥Πkui∥2

3. ∥w∥2 ≤ 16
∑t

i=1 ∥ui∥2

Definition 9. A non-special inlier phase is said to be suc-
cessful if all the inequalities in Lemma 8 are satisfied. Oth-
erwise, it is said unsuccessful.

Combining the lemma 7 and 8, we get that the number of
successful majority inlier phases of non-special inlier and
non-special outlier is O(k · log ∥Ain∥2

F

ξ ).

Consider each phase as a coin toss, then the successful phase
can be thought as the head result of the coin. Assume that
we know the number of successful phases, by the Chernoff
bound, we can see that it is very unlikely that the number of
unsuccessful phase is much larger.

Now we are ready to present the proof sketch of our main
theorem.

Proof Sketch of Theorem 5. Combined the conclusion above,
we can get that with probability at least 1 − δ, the total
number of phases is O(k · log ∥Ain∥2

F

ξ + log(1/δ)). We
remark that for either special, non-special inlier, non-special
outlier phases, the cumulative probability over non-special
inliers should be bounded by 2, which shows that the cost
of inliers not marked as outliers in each phase is O(ξ/k).
Thereby, the total cost over inliers not marked as outliers is
O(ξ · log ∥Ain∥2

F

ξ + ξ
k log(1/δ)). Similarly, we observe that

for either phase, the number of points marked as outliers
should be bounded by 2z

k . Multiply it with the total number
of phases we have the total number of marked outliers is
O(z · log ∥Ain∥2

F

ξ + z
k log 1/δ). For the running time, we

note that in each iteration, we only need to maintain the
covariance matrix U = V V T , where V ∈ Rd×1. Thus, the
running time is only O(d2).

3.2. Constant approximation

Then we present the guarantee of Algorithm 2. Again, this
result is almost our result of Theorem 2, except for the
requirement of ξ ≥ OPTk.

Theorem 10. If Assumption 2 is satisfied, and we allow a
second-time pass over the point, and δ > 0, then we have
that with probability at least 1 − δ, Algorithm 2 satisfies:
the number of phase and the number of columns r to be
≤ O( k

ϵ2 (log
∥Ain∥2

F

ξ + log 1/δ)3). The objective cost for the
output embedding Y , over the points not marked as outliers
≤ OPTk + ϵξ.

Proof Sketch of Theorem 10. We show that the resid-
ual squared norm in Algorithm 1 is bounded by O(ξ ·
log

∥Ain∥2
F

ξ ), so we can set ϵ′ = ϵ/(log
∥Ain∥2

F

ξ ) and sat-
isfy the desired additive error. By Theorem 4, we have∑

i

∥∥Ai −WT yi
∥∥2
F
≤ OPTk + ϵξ (it is satisfied because

we set k′ ≥ k, so OPTk′ ≤ OPTk). Thus we get the de-
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sired error bound. We plugged the value from Eq. (3) to
the embedding dimension l, and the dominant part in the
dimension is O(( k

ϵ2 )(log
∥Ain∥2

F

ξ + log 1/δ)3).

4. Conclusion and Future Work
In this paper, we have presented a robust PCA algorithm
in the online manner that builds up a low-rank embedding
by adding the new directions to the subspace in each iter-
ation, when the data is corrupted by outliers. Prior to this
work, existing PCA algorithms either only considered par-
tial assumption, or failed to present the convergence analysis
within finite data. To our best knowledge, this paper is the
first to provide a provable algorithm using sampling method.

We raise three open questions for future work. Firstly, our
work assumes that the inlier data are noiseless. It would
always be interesting to examine whether our model can
preserve the guarantee when the inliers are with additive
noise. Secondly, the number of outliers marked by our algo-
rithm slightly violates the bounds on the actual number of
outliers z and the dimension of the subspace k by a logarith-
mic factor. It would be interesting to examine whether we
can get a better dependence on these parameters. For exam-
ple, Bhaskara & Kumar (2018) proposes an offline robust
sampling algorithm that violates the number of outliers by
only a factor (1 + δ), where δ is an additional input, which
improves the dependence on z from a logarithmic factor
to a constant ratio. Finally, our work focuses on finding
low-rank approximation under Frobenius error, and it would
be interesting to study whether our residual-based algorithm
can solve the problem under general ℓp error.
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A. Restatement of Useful Notations
Recall we have a set of n points with d features, represented by a matrix A ∈ Rd×n, and a low-rank embedding dimension
k < min{d, n}. A can be partitioned into inliers and the outliers. That is, A = Ain ∪Aout. We assume there exists an upper
bound z on the number of outliers: |Aout| ≤ z. We also set ξ be the approximation error over Ain, and SVDk(Ain) be the
optimal rank-k approximation of Ain, ξ ≥

∥∥Ain − SVDk(Ain)
∥∥2
F

.

B. Omitted Proofs for Tightness

In this section, we show an example to explain why the logarithmic term log
∥Ain∥2

F

ξ is a unavailable for residual-based
sampling algorithm.

Lemma 11 (Bhaskara et al. (2019)). Let k = 1, and let t, z > 2 be parameters that will be fixed shortly. There exists a
matrix A of dimensions t× t, such that ∥A∥2F = z2t, the rank-1 approximation error

∥∥A− SVD-1(A)
∥∥2
F
≤ 2t2/z2, and

further, such that every column of A has a squared projection at least 1 orthogonal to the previous columns.

Proof. We choose the matrix in the following, where z > 2. It is easy to see that each column has a length 1 orthogonal to
the previous columns. The bound on the Frobenius norm is also easy to check.

M =


1 z2 z3 · · · zt−1

0 1 z2 · · · zt−2

· · ·
0 0 0 · · · 1


Let σ1 ≥ σ2 ≥ · · · ≥ σt ≥ 0 be the singular values of M . We demonstrate an explicit subspace S of dimension t− 1 such
that

max
x∈S,∥x∥=1

∥Mx∥2 ≤ 2t

z2

By the min-max characterization of singular values, this implies the desired claim. Now define

S = {x ∈ Rt :
x1

zt−1
+

x2

zt−2
+ · · ·+ xt = 0}

Take any unit vector x ∈ S. Consider the ith coordinate of Mx. This is precisely

(Mx)i = xi +
xi+1

z
+ · · ·+ xt

zt−1
− (

xt−1

z
+

xt−2

z2
+ · · ·+ x1

zt−1
)

where we used the definition of x ∈ S. Thus by Cauchy-Schwartz, we have that

(Mx)2i ≤ t(
x2
t−1

z2
+

x2
t−2

z4
+ · · ·+ x2

1

z2t−2
)

Since z > 2, we have
∑

i(Mx)2i ≤ 2t
z

∑
i x

2
i , thus proving σ2

2 ≤ 2t
z2 . This immediately implies that

∥∥A− SVDk(A)
∥∥2
F
≤

2t2

z2 .

Assume z = 2t, and ξ = 1. Now we know that
∥∥A− SVDk(A)

∥∥2
F
≤ ξ. If we run an algorithm that samples the columns

(as they arrive) with probability min (1,
∥∥Π⊥Ai

∥∥2
2
/ξ) (as in our algorithms, Π⊥ is the projection orthogonal to the chosen

columns), this algorithm will indeed pick all the columns. Thus the algorithm is choosing Ω(k log
∥Ain∥2

F

ξ / log log
∥Ain∥2

F

ξ )

columns. This matches the upper bound up to a log
∥Ain∥2

F

ξ factor.
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C. Omitted Proofs for Logarithmic Approximation Algorithm
We can get the number of majority outlier phases immediately from the Definition 6.

Lemma 12. The total number of majority outlier phases is 2k.

Proof. Suppose we have t majority outliers phases.

Let us consider one of these phases.

• If the phase is special or non-special outlier, and all points in that phase are v1, v2, ..., vr, by the definition we would
have

∑
i∈[r]∧vi∈V \Vin

k
z ≥

1
2 .

• If the phase is non-special inlier, and all points in that phase are v1, v2, ..., vr, by definition we would have∑
i∈[r]∧vi∈V \Vin

k∥Π⊥
V v∥2
ξ ≥ 1

2 , and since k
z ≥

k∥Π⊥
V v∥2
ξ , we can also obtain that

∑
i∈[r]∧vi∈V \Vin

k
z ≥

1
2 .

Therefore we can see that in either case, the number of outlier points in a phase is at lease z
2k .

Suppose that t > 2k, we would have the number of outliers > z, which contradicts to the setting of the upper bound z on
the number of outliers. This implies t ≤ 2k. That is, the number of majority outliers phases is 2k.

Before talking about the majority inlier phase, we state the non-trivial Geometric Lemma, which would be used in the
majority inlier phase analysis.

Lemma 13 (Restatement of Lemma 7). . Let v1, v2, ..., vr ∈ Rd be a set of linearly independent vectors, r ≤ d. Let c > 0

be any constant, and let Γ be a parameter satisfying Γ ≥ 1
c

∥∥∥V − V (k)
∥∥∥2
F

. Suppose that vi satisfy
∥∥Π⊥

i−1

∥∥2 ≥ γ. Suppose

additionally that γ2 ≥ 2cΓ
k . Then the number of columns r satisfies the bound r ≤ 2k · log

(
∥V ∥2

F

2cΓ

)
.

Proof. Let K be the parallelopiped formed by the columns of V . It is well-known that vol(K) =
√

det(V TV ). The volume
of the parallelopiped can also be computed iteratively using the “base times height” formula. If ℓi is the length of the
projection of vi orthogonal to span{v1, ..., vi−1}, then the volume is precisely Πr

i=1ℓi. In our case, this is at least γr by
hypothesis.

Let σ1 ≥ σ2 ≥ ... ≥ σr be the singular values of the matrix V . Now, if
∥∥∥V − V (k)

∥∥∥2
F
≤ cΓ, then σ2

2k+1 ≤ cΓ
k . For suppose

not, then:
σ2
k+1 + σ2

k+2 + ...+ σ2
2k+1 ≥ (k + 1)σ2

2k+1 ≥ cΓ,

contradicting the bound on
∥∥∥V − V (k)

∥∥∥2
F

. Next, using the formula for the volume, we have

(
Π2k

i=1σi

)(cΓ

k

)(r−2k)/2

≥ γr.

Now, using standard convexity, we have

Π2k
i=1σi ≤

(∑2k
i=1 σi

2k

)2k

≤

(∑2k
i=1 σ

2
i

2k

)k

≤

(
∥V ∥2F
2k

)k

.

Combine the two equations above, we have (
∥V ∥2F
2cΓ

)k

≥

(
γ2k

cΓ

)r/2

.

Take logarithms on both sides we have

k · log (
∥V ∥2F
2cΓ

) ≥ r

2
· log (γ

2k

cΓ
).
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Thereby we get

r ≤ 2k ·
log (

∥V ∥2
F

2cΓ )

log (γ
2k
cΓ )

,

where we assume γ2 ≥ 2cΓ
k , so log (γ

2k
cΓ ) ≥ log 2, which gives the desired bound r ≤ 2k · log (∥V ∥2

F

2cΓ ).

Applying the Geometric Lemma, we can get the number of mjaority inliers phase.

Lemma 14. The total number of majority inliers special phase is 2k log ∥A
2
in∥

2ξ .

Proof. We claim that for the arriving point Ai, pAi
=

k∥Π⊥
V Ai∥2
ξ , where n ≥ 2 is a constant number.

Let T be the matrix consisting of all the columns that made the phases special. Note that any column of T must have squared
projection ≥ nξ/k orthogonal to the span of all previous columns of T .

T is the subset of A, so we have ∥T∥2F ≤ ∥Ain∥2F , and
∥∥∥T − T (k)

∥∥∥2
F
≤
∥∥Ain − SVDk(Ain)

∥∥2
F
≤ ξ. Thus the hypothesis

of lemma 7 holds. This implies that

#cols(T ) ≤ 2k log
∥T∥2F
nξ

≤ 2k log
∥T∥2F
2ξ

≤ 2k log

∥∥A2
in

∥∥
2ξ

.

Lemma 15 (Restatement of Lemma 8). (Non-special inlier phases with majority inliers) Let the phase be a majority inlier
non-special inlier phase. Let {ui}ti=1 be the non-special inliers in the phase. Then with probability at least 1/4 we have:

1.
∥∥Π⊥

V w
∥∥2 ≥ 1

8

∑t
i=0

∥∥Π⊥
V ui

∥∥2 .
2. If Πk is the projection matrix orthogonal to the k-SVD space of the inliers Ain, then

∥Πkw∥2 ≤ 16

t∑
i=1

∥Πkui∥2

3. ∥w∥2 ≤ 16
∑t

i=1 ∥ui∥2

Proof. By definition, w =
∑t

i=1 XiAi where Xi is the uniformly at random sign for vector Ai. In the end of the phase,
we have Π⊥

V w =
∑t

i=1 XiΠ
⊥
V Ai. Denote the random variable Z to be

∥∥Π⊥
V w
∥∥2, we can obtain Z = (

∑t
i=1 Π

⊥
V XiAi)

2 =∑t
i=1

∥∥Π⊥
V Ai

∥∥2 + 2
∑

i<j XiXj

∥∥Π⊥
V Ai

∥∥∥∥Π⊥
V Aj

∥∥. By the linearity of expectation, we have:

E[Z] =
∑

1≤i,j≤t

E
[
XiXj

] ∥∥∥Π⊥
V Ai

∥∥∥ · ∥∥∥Π⊥
V Aj

∥∥∥ =

t∑
i=1

∥∥∥Π⊥
V Ai

∥∥∥2 ,
where the second equality holds because E

[
XiXj

]
is 0 for any i ̸= j and 1 for i = j. We can apply the Paley-Zygmund

inequality to lower bound the probability of this event:

Pr

[
Z ≥ 2−

√
3

2
E[Z]

]
≥ 3E[Z]2

4E[Z2]
(7)

We expand E[Z]2 as:

E[Z]2 =

t∑
i=1

∥∥∥Π⊥
V Ai

∥∥∥4 +∑
i<j

2
∥∥∥Π⊥

V Ai

∥∥∥2 ∥∥∥Π⊥
V Aj

∥∥∥2
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Then we need to figure out the value of

E[Z2] = E


∑

i

∥∥∥Π⊥
V Ai

∥∥∥2 + 2
∑
i<j

XiXj⟨Π⊥
V Ai,Π

⊥
V Aj⟩

2


We note any term with an odd power of Xi has expectation of 0. The remaining terms has the coefficients X 4
i or X 2

i X 2
j ,

which equals to 1. Therefore we have:

E[Z2] =

t∑
i=1

∥∥∥Π⊥
V Ai

∥∥∥4 + 4
∑
i<j

⟨Π⊥
V Ai,Π

⊥
V Aj⟩2

Applying Cauchy-Schwartz inequality to the inner products above and then we can obtain E[Z2] ≤ 2E[Z]2. Applying this
into Equation 7 we obtain:

Pr

[
Z ≥ 2−

√
3

2
E[Z]

]
≥ 3

8

We also observe that 2−
√
3

2 is at least 1/8. Thus we have w.p. 3/8,
∥∥Π⊥

V w
∥∥2 ≥ 1

8

∑t
i=0

∥∥Π⊥
V Ai

∥∥2. This ensure the first
statement holds.

Assume Z = ∥Πkw∥2 where Πk is the projection matrix orthogonal to the k-SVD space of the matrix Ain. Applying the
Markov inequality we have:

Pr
(
Z ≥ 16E[Z]

)
≤ 1

16

Therefore we have w.p. 15/16, ∥Πkw∥2 ≤ 16E
[
∥Πkw∥2

]
. From the proof of the first statement we have E

[
∥Πkw∥2

]
=∑t

i=1 ∥ΠkAi∥2. The second statement holds.

The proof of the third statement is identical to the second statement (Assuming Z = ∥w∥2, and applying it to Markov
inequality). So it also holds w.p. 15/16. Combine the results above , we conclude that with probability at least 1− 5/8−
1/16− 1/16 = 1/4, both of the inequalities hold.

Similar to successful non-special inlier phases, we show the analysis of the successful non-special outlier phases.

Lemma 16. (Majority inliers non-special outlier) Let the phase be a majority inlier non-special outlier phase. Let {Ai}ri=1

be the non-special outliers in the phase, V be the basis subspace at beginning of the phase, and t be the linear combination
of the residuals from picked points at the end of phase. The phase is said to be successful with probability 1/80:

•
∥∥Π⊥

V t
∥∥2 ≥ 1

2

∑r
i=1

∥∥Π⊥
V Ai

∥∥2 .
• If Πk is the projection matrix orthogonal to the k-SVD space of the matrix Ain, then

∥Πkt∥2 ≤ 40

r∑
i=1

∥ΠkAi∥2

• ∥t∥2 ≤ 40
∑r

i=1 ∥Ai∥2

Proof. Let A1, ..., Ar be the columns in a phase. Let Yi be a indicator showing whether Ai is picked or not. By definition,
we have Pr [yi = 1] = pAi

.

Using above definition, we have

t =

r∑
i=1

XiYi
Ai√
pAi

.
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Firstly, let’s compute the expectation of residuals of Ai, we show

E
[∥∥∥Π⊥

V t
∥∥∥2] = r∑

i=1

E[Y 2
i ]

∥∥Π⊥
V Ai

∥∥2
pAi

+ 2
∑
i<j

E
[
XiXj

]
E[YiYj ]

⟨Π⊥
V Ai,Π

⊥
V Aj⟩√

pAi
pAj

=

r∑
i=1

∥∥∥Π⊥
V Ai

∥∥∥2

This holds because E
[
XiXj

]
is zero for i ̸= j, and E[Y 2

i ] = E[Yi] = pAi
.

We denote the random variable Z to be
∥∥Π⊥

V t
∥∥2 and apply it to Paley-Zygmund inequality shown in 7. We can easily obtain

that E[Z]2 =
∑r

i=1

∥∥Π⊥
V Ai

∥∥4 +∑i<j 2
∥∥Π⊥

V Ai

∥∥2 ∥∥Π⊥
V Aj

∥∥2 .Then we need to compute E[Z2].

E[Z2] =

r∑
i=1

pAi

∥∥∥∥∥Π⊥
V

Ai√
pAi

∥∥∥∥∥
4

+ 6
∑
i<j

pAi
pAj
⟨Π⊥

V

Ai√
pAi

,Π⊥
V

Aj√
pAj

⟩2

Applying Cauchy-Schwartz inequality to the second part we obtain:

E[Z2] ≤
r∑

i=1

∥∥Π⊥
V Ai

∥∥4
pAi

+ 6
∑
i<j

∥∥∥Π⊥
V Ai

∥∥∥2 ∥∥∥Π⊥
V Aj

∥∥∥2 .
For the first term, since the phase is non-special, we have pAi =

k
ξ

∥∥Π⊥
V Ai

∥∥2, so we can obtain

r∑
i=1

∥∥Π⊥
V Ai

∥∥4
pAi

=
ξ

k

r∑
i=1

∥∥∥Π⊥
V Ai

∥∥∥2

The phase ends when
∑r

i=1 pAi
≥ 1, so equivalently we have

∑r
i=1

∥∥Π⊥
V Ai

∥∥2 ≥ ξ
k . Combine this with the inequality

above we have:

ξ

k

r∑
i=1

∥∥∥Π⊥
V Ai

∥∥∥4 ≤
 r∑

i=1

∥∥∥Π⊥
V Ai

∥∥∥2
2

The second term (6
∑

i<j

∥∥Π⊥
V Ai

∥∥2 ∥∥Π⊥
V Aj

∥∥2) is not more than 3E[Z2]. Thus we conclude that E[Z2] ≥ 4E[Z]2. Applying
it to 7 we have Pr

[
Z ≥ 1/2E[Z]

]
≥ 1

16 . This ensures that the first statement holds with probability 1/16.

Assume Z = ∥Πkw∥2 where Πk is the projection matrix orthogonal to the k-SVD space of the matrix Ain. Applying this to
Markov inequality we have:

Pr
(
Z ≥ 40E[Z]

)
≤ 1

40

Therefore we have w.p. 39/40, ∥Πkw∥2 ≤ 40E
[
∥Πkw∥2

]
. From the proof of the first statement we have E

[
∥Πkw∥2

]
=∑t

i=1 ∥ΠkAi∥2. The second statement holds.

The proof of the third statement is identical to the second statement (Assuming Z = ∥w∥2, and applying it to Markov
inequality). So it also holds w.p. 39/40. Combine the results above, we conclude that with probability at least 1− 15/16−
1/40− 1/40 = 1/80, both of the inequalities hold together.

Lemma 17. The number of successful majority inliers non-special inlier phases is 2k log ∥A
2
in∥

2ξ .

Proof. We claim that for the arriving point Ai, pAi =
k∥Π⊥

V Ai∥
nξ , where n ≥ 512 is a constant number.

By the definition of a successful majority inlier non-special inlier phase, we have:
∑

i∈[r]∧Ai∈Vin

∥∥Π⊥
V Ai

∥∥2 ≥ nξ
2k . By the

first inequality in the definition of a successful majority inliner non-special inlier phases, we have
∥∥Π⊥

V w
∥∥2 ≥ nξ

16k .
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Let T be the matrix whose columns are all the vectors w at the end of successful majority inlier non-special inlier phases. The
span of the columns of T is a subspace of the span of the columns of V . By the third inequality in the definition of a successful

phase, we have ∥T∥2 ≤ 16 ∥Ain∥2. Also, by the second inequality, we have
∥∥∥T − T (k)

∥∥∥2
F
≤ 16

∥∥Ain − SVDk(Ain)
∥∥2
F

.

Thus ξ satisfies that ξ ≥ 1
16

∥∥∥T − T (k)
∥∥∥2
F

.

Above inequality implies that

#cols(T ) ≤ 2k log
16 ∥T∥2

nξ
≤ 2k log

∥T∥2

32ξ
≤ 2k log

∥∥A2
in

∥∥
2ξ

.

Lemma 18. The number of successful majority inliers non-special outliers phases is 2k log ∥A
2
in∥

2ξ .

Proof. We claim that for the arriving point Ai, pAi
=

k∥Π⊥
V Ai∥
nξ , where n ≥ 320 is a constant number.

By the definition of a successful majority inlier non-special outlier phase, we have:
∑

i∈[r]∧Ai∈Vin

k
z ≥

1
2 , and since

k∥Π⊥
V Ai∥2
ξ ≥ k

z , we can also obtain
∑

i∈[r]∧Ai∈Vin

k∥Π⊥
V Ai∥2
nξ ≥

∑
i∈[r]∧Ai∈Vin

k
z ≥

1
2 . Thus,

∑
i∈[r]∧Ai∈Vin

∥∥Π⊥
V Ai

∥∥2 ≥
nξ
2k . By the first inequality in the definition of a successful majority inliner non-special outlier phases, we have

∥∥Π⊥
V w
∥∥2 ≥

nξ
4k .

Let T be the matrix whose columns are all the vectors t at the end of successful non-special majority inlier non-special
outlier phases. The span of the columns of T is a subspace of the span of the columns of V . By the third inequality in

the definition of a successful phase, we have ∥T∥2 ≤ 40 ∥Ain∥2. Also, by the second inequality, we have
∥∥∥T − T (k)

∥∥∥2
F
≤

40
∥∥Ain − SVDk(Ain)

∥∥2
F

. Thus ξ satisfies that ξ ≥ 1
40

∥∥∥T − T (k)
∥∥∥2
F

.

Above inequality implies that

#cols(T ) ≤ 2k log
4 ∥T∥2

nξ
≤ 2k log

∥T∥2

80ξ
≤ 2k log

∥Ain∥2

2ξ
.

Given the number of successful phase of majority inliers non-special inlier and outlier phases, we want to get their number
of total phases. Formally, we need the following result.

Theorem 19. (Bhaskara et al., 2019) We toss a coin n times. The tosses are independent of each other and in each toss,
the probability of seeing a head is at least p. Let Hm and Tm denote the number of heads and tails we observe in the first
m ≤ n coin tosses. With probability 1− δ, we have Hm ≥ pm

4 − ⌈8log(
2
δ /p) for any 1 ≤ m ≤ n. We note that although

the claim is about conjunction of all these n events, the probability does not rely on n.

Proof. We denote µ the expected number of heads in the first m tosses, which is at least pm. The lower tail inequality of
Chernoff Bounds implies

Pr[Hm < (1− 1

2
)µ] ≤ e−µ/8 ≤ e−pm/8

The error probability e−pm/8 is at most δ/2 for m ≥ m′ = ⌈8 log(2/δ)/p⌉. Instead of summing up the error bound for all
values of m, we focus on the smaller geometrically growing sequence M = {2ℓm′|ℓ ∈ Z≥0 AND 2ℓm′ ≤ n}. Having the
lower bound on Hm for every m ∈ M helps us achieve a universal lower bound on any 1 ≤ m ≤ n as follows. For any
m ≤ m′, the bound Hm ≥ pm−m′ holds trivially.

For any other m ≤ n, there exists an m′′ ∈M such that m′′ ≤ m ≤ 2m′′. By definition Hm is at least Hm′′ . Assuming
Hm′′ ≥ pm′′/2 implies Hm is at least pm/4 which proves the claim of the lemma. So we focus on bounding the error
probabilities for values in set M .
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For m′, the error probability is at most δ/2. The next value in M is 2m′, so given the exponential form of the error, it is at
most (δ/2)2. Using union bound, the aggregate error probability for set M does not exceed

δ

2
+ (

δ

2
)2 + (

δ

2
)4 + ... ≤ δ/2

1− δ/2
≤ δ.

Therefore with probability at least 1− δ, we have for every m ∈M , Hm ≥ pm/2, and consequently for every 1 ≤ m ≤ n,
Hm ≥ pm

4 −m′ which finishes the proof.

Using lemma 19, we see that if Hm is the number of head coins, then with probability at least 1− δ, the total number of
coin tosses m = O(Hm + log ( 1δ )).
Lemma 20. For any δ > 0, with probability at least 1 − δ, the total number of majority inliers non-special phases is
O(k · log ∥Ain∥2

F

ξ + log(1/δ)).

Proof. We consider each phase as coin toss. A head in the coin toss is associated with the phase being a successful
one. For majority inliers non-special inlier phases, each phase has a probability ≥ 1/4 of being successful. Applying
it to the Theorem 19, with probability 1 − δ/2, the bound on the number of majority inliers non-special inlier phases is

O(k · k · log ∥Ain∥2
F

ξ + log(1/δ)). Similarly, for majority inliers non-special outlier phases, each phase has a probability
≥ 1/80 of successful. We also have that with probability 1− δ/2, the bound on the number of majority inliers non-special

outlier phases is O(k · k · log ∥Ain∥2
F

ξ + log(1/δ)).

Then the probability that both bounds hold is ≥ (1− δ/2)2 ≥ 1− δ, and the number of the majority inliers non-special

phases is O(k · log ∥Ain∥2
F

ξ + log(1/δ)).

Lemma 21. For any δ > 0, with probability at least 1− δ, the total number of phases is O(k · log ∥Ain∥2
F

ξ + log(1/δ)).

Proof. Combining the Lemmas 12, 14 and 20, we can immediately prove this lemma.

Then, we get the number of columns in subspace, which is also the embedding dimension, |V |.
Lemma 22. Given any δ > 0, with probability at least 1 − δ, the number of columns in subspace and the embedding
dimension is ≤ O(k · log ∥Ain∥2

F

ξ + log(1/δ)).

Proof. Every special phases and non-special outlier phases output at most two columns, while the non-special inlier phases
output one column, so we have additional O(k · log ∥Ain∥2

F

ξ ) number of columns compared with the number of phases, which
implies this lemma.

Then we are ready to prove our error guarantee and the number of marked outliers.
Lemma 23. Define the inlier points not marked as outliers as Ain\M . Given any δ > 0, in the end, with probability 1− δ,

min
Φ∈Rd×r,ΦTΦ=I

∥∥Ain\M − ΦY
∥∥2
F
≤ ξ ·O(log

∥Ain∥2F
ξ

+ log (1/δ)/k).

Proof. Firstly, we show the bound on the cost in each phase. To this end, let A1, ..., Ar be the points in a phase, and let
Vpre be the basis vector of points at the start of the phase, and Vcur be the basis vector of points after the vector Ar has been
processed. We now consider two cases,

• If the phase is non-special inlier:∑
i∈[r]∧Ai∈Vin\M

∥∥∥Π⊥
Vcur

u
∥∥∥2 ≤ ∑

i∈[r]∧Ai∈Vin\M

∥∥∥Π⊥
Vpre

u
∥∥∥2 ≤ ∑

i∈[r]∧Ai∈Vin\M

pAi

ξ

k
≤ 2

ξ

k
.

The last inequality follows from that the sum of the selection probabilities of non-special inliers in a non-special inlier
phase is ≤ 2.
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• If the phase is special or non-special outlier:∑
i∈[r]∧Ai∈Vin\M

∥∥∥Π⊥
Vcur

u
∥∥∥2 ≤ ∑

i∈[r]∧Ai∈Vin\M

∥∥∥Π⊥
Vpre

u
∥∥∥2 ≤ ∑

i∈[r]∧Ai∈Vin\M

pAi

ξ

k
≤ ξ

k
.

The last inequality follows from that the sum of the selection probabilities of non-special inliers or outliers is < 1.

This implies that in either case
∑

i∈[r]∧Ai∈Vin\M

∥∥∥Π⊥
Vcur

u
∥∥∥ ≤ 2 ξ

k . Combined with the bound on the number of phases,
we have that with probability at least 1 − δ, the total cost over the inlier points which are not marked as outliers is
ξ ·O(log

∥Ain∥2
F

ξ + log (1/δ)/k).

Lemma 24. The number of marked outliers satisfies |M | ≤ z ·O(log
∥Ain∥2

F

ξ + log (1/δ)
k ).

Proof. We will first show the bound on number of points marked as outliers in each phase. Let the set of points marked as
outliers be M . We consider three cases.

• case 1: The phase is non-special inliers: ∑
i∈[r]∧u∈M

k

z
< 1.

The inequality follows from the definition that if the phase is non-special inlier, then β < 1.

• case 2: The phase is non-special outlier: ∑
i∈[r]∧u∈M

k

z
< 2.

The inequality follows from the definition that if the phase is non-special outlier, then 1 ≤ β < 2.

• case 3: The phase is special: ∑
i∈[r−1]∧u∈M

k

z
< 1.

Therefore, we can see that in case 1 and case 2, |i ∈ [r] ∧ u ∈M | ≤ 2z
k . In case 3, we have the bound on the number of

phase being 1 + z
k , while by our setting z

k > 1, we also obtain |i ∈ [r − 1] ∧ u ∈M |+ 1 ≤ 2z
k . Combined with the bound

on the number of phases, with probability at least 1− δ, |M | ≤ 2z
k O(kL+ log(1/δ)) = z ·O(log

∥Ain∥2
F

ξ + log(1/δ)
k ). So

we have the desire bound on the second term.

Theorem 25 (Restatement of Theorem 5). If Assumption 1 and Assumption 2 are satisfied, and δ > 0, then with
probability 1 − δ, Algorithm 1 satisfies: the number of phases, and the number of columns r of the subspace V , is
≤ O(k · log ∥Ain∥2

F

ξ + log 1/δ). The number of points marked as outliers is O(z · log ∥Ain∥2
F

ξ + z
k log 1/δ). The objective

cost for the inlier points not marked as outliers is O(ξ · log ∥Ain∥2
F

ξ + ξ
k log 1/δ). The running time of each step is O(d2).

Proof. This is an immediate result by combining Lemmas 22, 24 and 23. The proof for running time has been stated in the
last part of Section 2.1.

D. Omitted Proofs for Constant Approximation Algorithm
We remark that since we only process the marked inliers to Algorithm 2, the guarantee for the number of marked outliers is
identical. Thus in the section, we only show the analysis of output embedding and the total cost over inliers not marked as
outliers.

Lemma 26. The cost for the output embedding Y , over the points not marked as outliers is ≤ OPTk + ϵξ.
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Proof. In the ith iteration, let V ′
i denote the subspace that Algorithm 1 maintains, and r′i denote the residual of the Algorithm

1, r′i = Π⊥
V ′
i
Ai, which is also the input of the Algorithm 2. Let V ′′

i denote the subspace that Algorithm 2 maintains and r′′i
denote its residual, r′′i = Π⊥

V ′′
i
r′i. Let R′ denote the matrix whose ith column is r′i, and R′′ denote the matrix whose ith

column is r′′i .

For our choice of Γ, we have that with probability at least 1− δ,∑
i

∥∥r′i∥∥2 ≤ Γ.

Then with probability at least 1− δ, we can get the error guarantee from Theorem 4∑
i

∥∥r′′i ∥∥2 ≤ ∥∥∥R′ − (R′)(k
′)
∥∥∥+ ϵ′Γ. (8)

Based on the notion of residual, we have that r′i = Ai − V ′
i y

′
i, and according to Theorem 5, V ′

i at any time contains at most
O(kL+ k + log(1/δ)). Thus the rank-k′ approximation to the matrix R′ has error at most the rank-k approximation to the
matrix Ai. Namely, ∥∥∥R′ −R′(k′)

∥∥∥2 ≤ ∥∥Ain − SVDk(Ain)
∥∥2 (9)

Based on Equation 3, we have ϵξ = ϵ′Γ. Combining it with Equation 8 and 9, we get:∑
i

∥∥r′′i ∥∥2 ≤ ∥∥Ain − SVDk(Ain)
∥∥2
F
+ ϵξ (10)

As a final step, we observe that
r′′i = r′i − V ′′

i y′′i = Ai − V ′
i y

′
i − V ′′

i y′′i .

This is the difference of Ai and a liner combination of the space V ′
i ∪ V ′′

i . Thus the length of r′′i is upper bounded by the
distance of Ai to the span of the space V ′

i n ∪ V ′′
i n, which is Ai −WiW

T
i Ai. Namely, we get:∑

i

∥∥∥Ai −WiW
T
i Ai

∥∥∥2 ≤∑
i

∥∥r′′i ∥∥2 . (11)

Combining Equation 10 with 11, and since Y =
∑

i W
T
i Ai, we get

∥A−WY ∥2F ≤
∥∥Ain − SVDk(Ain)

∥∥2
F
+ ϵξ,

which completes the proof.

Lemma 27. For any δ > 0, with probability at least 1− δ, the number of phase and the number of output dimension r is
≤ O( k

ϵ2 (log
∥Ain∥2

F

ξ + log 1/δ)3).

Proof. Since the dominating term in output dimension l is O(k′/ϵ′). Plugging in the values from Equation 3 completes the
proof.

Theorem 28 (Restatement of Theorem 10). If Assumption 1 and Assumption 2 are satisfied, and δ > 0, then we have that
w.p. at least 1− δ, Algorithm 2 satisfies: the number of phase and the number of output dimension r is ≤ O( k

ϵ2 (log
∥Ain∥2

F

ξ +

log 1/δ)3). The objective cost for the output embedding Y , over the points not marked as outliers is ≤ OPTk + ϵξ.

Proof. This is an immediate result by combining Lemmas 26 and 27.
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E. Omitted Proofs for Algorithm without the dependence on ξ

E.1. Proof of Theorem 1

In this section, we present the proof for guarantee of the Logarithmic Approximation algorithm without the assumption
ξ ≥ OPTk. The guarantee for Constant Approximation has been explained in Section 2.3.

Recall Lδ = log
∥Ain∥2

F

ξ + log (1/δ), and 0 < δ ≤ 1.

Lemma 29. For any δ > 0, with probability at least 1− δ, the output dimension is O(kL2
δ).

Proof. Assume we have a set of vectors A = {A1, A2, ..., An}. For a fixed subspace T , let B = {B1, B2, ..., Bn} denote
the orthogonal projections from B to T , that is, Bi = Π⊥

TAi. By the fact that the rank-k error only reduces upon projection,

we get
∥∥∥A−A(k)

∥∥∥2
F
≥
∥∥∥B −B(k)

∥∥∥2
F

. By Algorithm 3, the guessing approximation error ξj does not increase once

ξj ≥
∥∥∥A−A(k)

∥∥∥2
F

, so the total number of the doubling is log

∥∥∥A−A(k)
∥∥∥2

F

ξ , which is trivially bounded by Lδ , so the output

dimension is bounded by Lδ ·O(kLδ) = O(kL2
δ).

Lemma 30. Suppose we have the initial approximation error ξ0, and δ > 0, in the end, with probability at least 1− δ, the
cost over inliers not marked as outliers is at most O(ξ0Lδ).

Proof. After doubling j times, the guessing approximation error is ξj = 2jξ0. Since the number of phases of each ξj is
bounded by kLδ, and the cumulative residual errors over non-special inliers in each phase is < 2ξj

k , we conclude that the
total residual error over inliers not marked as outliers is at most

kLδ

(
2ξ0
k

+
22ξ0
k

+ ...+
2j+1ξ0

k

)
≤ O(ξLδ).

Lemma 31. For any δ > 0, with probability at least 1− δ, the total number of marked outliers is O(zL2
δ).

Proof. Since the number of doublings is bounded by Lδ, the number of phases of each ξj is bounded by kLδ, and the
number of marked outliers in each phase is < 2z/k, we conclude that the total number of marked outliers is bounded by

kLδ · (2z/k + 2z/k + ...+ 2z/k) = O(zL2
δ)

This establishes Theorem 1.

F. Numerical Results
In this section, we report some numerical results on synthetic data. Our goal is to illustrate the properties of the online
robust algorithm discussed in section 1, and compare our residual-based sampling for online robust PCA algorithm with the
algorithm in Feng et al. (2013a), which uses matrix decomposition to update the subspace in each iteration.

To make a fair comparison, we simulate the contaminated data as follows. We randomly generate an d× k matrix A, and
scale it to make its magnitudes of the leading eigenvalues = 2. Then we multiple A with another uniformly generated
matrix X = Rk×n to make L = AX . A fraction λ of outliers are generated with uniform distribution over [−20, 20], where
z = λn is the number of outliers.

The algorithm will return a subspace V after receiving every sample, and we will use it to compute the residual loss over
inliers

∥∥Ain − V V TAin
∥∥
F

as the performance.

We firstly show the simulations with total n = 1000 samples and d = 500 dimensions. Simulation results for optimum low
rank k = 5 with different number of outliers z = 100, 150, 200 have been shown in Figure 1.

While results show that our algorithm can recover the low-rank structure of inlier points, we also care about the dimension of
the output embedding, the number of the marked outliers. By the bicriteria approximation, we do not expect these numbers
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Figure 1. Performance comparison of our algorithm (red line) with Algorithm in Feng et al. (2013a) (blue line). Here d = 500, n = 1000,
k = 5. We observe that Algorithm in Feng et al. (2013a) converges faster, but our algorithm can get a more accurate approximation. We
notice that the red line is a broken line, while blue line is smooth. It makes sense because our algorithm only updates the subspace when
the new direction is informative, while Feng et al. (2013a) updates subspace almost in every iteration.
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Figure 2. Performance comparison of our algorithm (red line) with Feng et al. (2013a) (blue line). Here d = 1000, n = 1000, k = 5.

too large compared with true values. Moreover, we assume our Algorithm enjoys better computation time than Feng et al.
(2013a). Table 2, 3 and 4 support our assumption.

Figure 2 and Table 5, 6 show results of the similar numerical study for n = 1000 samples, and d = 1000 dimensions, where
we observe similar trend.

Table 2. Comparison for the embedding dimension, marked outliers and execution time of our algorithm and Feng et al. (2013a) when
d = 500, k = 5, z = 100. We observe that our algorithm sacrifices more embedding dimension and number of marked outliers to get
the approximation. In contrast, Feng et al. (2013a) can keep the dimension, but mark too few points as outliers. We also show that out
algorithm is faster than Feng et al. (2013a).

Algorithm Embedding Dimension #Marked Outliers Running Time (s)

Our algorithm 12 132 7.37
Feng et al. (2013a) 5 29 41.52
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Table 3. Comparison for the embedding dimension, marked outliers and execution time when d = 500, k = 5, z = 150.

Algorithm Embedding Dimension #Marked Outliers Running Time (s)

Our algorithm 14 235 9.26
Feng et al. (2013a) 5 50 43.79

Table 4. Comparison for the embedding dimension, marked outliers and execution time when d = 500, k = 5, z = 200.

Algorithm Embedding Dimension #Marked Outliers Running Time (s)

Our algorithm 6 564 8.42
Feng et al. (2013a) 5 58 50.96

Table 5. Comparison for the embedding dimension, marked outliers and execution time when d = 1000, k = 5, z = 100.

Algorithm Embedding Dimension #Marked Outliers Running Time (s)

Our algorithm 10 358 35.14
Feng et al. (2013a) 5 20 325.01

Table 6. Comparison for the embedding dimension, marked outliers and running time when d = 1000, k = 5, z = 150.

Algorithm Embedding Dimension #Marked Outliers Running Time (s)

Our algorithm 14 391 29.08
Feng et al. (2013a) 5 46 292.80


